Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 10(1): 38, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575604

RESUMO

Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.


Assuntos
GMP Cíclico/análogos & derivados , Lipopolissacarídeos , Mytilus , Animais , Larva/microbiologia , Larva/fisiologia , Metamorfose Biológica/genética , Mytilus/genética , Mytilus/microbiologia , Bactérias
2.
Mar Genomics ; 74: 101082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485290

RESUMO

Bacteria of the genus Psychrobacter are widely distributed in the global low-temperature marine environment and have been studied for their effects on the settlement and metamorphosis of marine invertebrates. Psychrobacter cibarius AOSW16051 was isolated from the surface water samples of the Baltic Sea on the edge of the Arctic Ocean. Here, we present the complete genome of strain AOSW16051, which consists of a circular chromosome composed of 3,425,040 nucleotides with 42.98% G + C content and a circular plasmid composed of 5846 nucleotides with 38.66% G + C content. The genes predicted in this strain showed its strong outer membrane system, type VI secretion system and adhesion system. Trimeric autotransporter adhesins (TAAs) has been identified in the genome of P. cibarius AOSW16051, which has a variety of biological functions in interacting with host cells. However, there are no reports on TAAs in marine bacteria and aquatic pathogenic bacteria. By analyzing the genomic data, we can gain valuable insights to enhance our understanding of the physiological characteristics of P. cibarius, as well as the biological functions of TAAs and their role in triggering metamorphosis of invertebrate larvae.


Assuntos
Psychrobacter , Psychrobacter/genética , Sistemas de Secreção Tipo V/genética , Adesinas Bacterianas/genética , Nucleotídeos
3.
RSC Adv ; 13(49): 34475-34481, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024997

RESUMO

Most ferroelectric oxides exhibit relatively wide bandgaps, which pose limitations on their suitability for photovoltaics application. CuNbO3 possesses potential ferroelectric properties with an R3c polar structure that facilitate the separation of charge carriers under illumination, promoting the generation of photovoltaic effects. The optical and ferroelectric properties of R3c-CuNbO3, as well as the effect of strain on the properties are investigated by first-principles calculation in this paper. The calculated results indicate that R3c-CuNbO3 possesses a moderate band gap to absorb visible light. The interaction of Cu-O and Nb-O bonds is considered to have a crucial role in the photovoltaic properties of CuNbO3, contributing to the efficient absorption of visible light. The bandgap of CuNbO3 becomes smaller and the density of states near the conduction and valence bands becomes relatively uniform in distribution under compressive conditions, which improves the photoelectric conversion efficiency to 29.9% under conditions of bulk absorption saturation. The ferroelectric properties of CuNbO3 are driven by the Nb-O bond interactions, which are not significantly weakened by the compressive strain. CuNbO3 is expected to be an excellent ferroelectric photovoltaic material by modulation of compressive strain due to the stronger visible light absorption and excellent ferroelectric behavior.

4.
World Neurosurg ; 180: e117-e126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683921

RESUMO

BACKGROUND: Although a benign intracranial tumor, craniopharyngioma treatment has always been considered a challenging clinical problem. Recently, BRAF V600E mutation in the pathogenesis of papillary craniopharyngioma (PCP) has been further revealed. Thus, BRAF inhibitors (BRAFi) serve as an applicable treatment for patients with PCP. METHODS: Two patients with recurrent PCP were treated with combined BRAFi dabrafenib (150 mg, orally twice daily) and MEK inhibitors (MEKi) trametinib (2 mg, orally twice daily). A follow-up exceeding 2 years was conducted. We meticulously scrutinized the treatment's safety and efficacy profiles by delving into existing literature. RESULTS: One patient harboring a solid tumor achieved a complete tumor response devoid of any adverse events and encountered no recurrence over 2 years subsequent to discontinuation. Moreover, within a mere month of commencing targeted therapy, the tumor demonstrated observable shrinkage. This finding substantiates the considerable potential inherent in targeted therapy for PCP cases marked by the somatic BRAF V600E mutation. CONCLUSIONS: Under specific conditions, individuals diagnosed with PCP can attain a complete tumor response following combined treatment with BRAFi/MEKi.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Humanos , Craniofaringioma/tratamento farmacológico , Craniofaringioma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mutação/genética , Inibidores de Proteínas Quinases , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética
5.
Chin Med Sci J ; 38(3): 218-227, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37376890

RESUMO

Objective To analyze the medication rules of traditional Chinese medicine (TCM) for malaria treatment.Methods Statistical analysis was conducted on the basic attributes of TCM drugs with regard to property, therapeutic methods, flavor, and meridian tropism. A complex network of TCM drug associations was constructed. Cluster analysis was applied to obtain the core drugs for malaria treatment. The Apriori algorithm was applied to analyze the association rules of these core drugs.Results A total of 357 herbs were used 3,194 times in 461 prescriptions for malaria treatment. Radix Glycyrrhizae (), Rhizoma Pinelliae (), Radix Bupleuri (), and Radix Dichroae () were the frequently used herbs through supplementing, exterior-releasing, heat-clearing, qi-rectifying, and damp-resolving therapeutic methods. Such herbs had warm, natural, and cold herbal properties; pungent, bitter, and sweet flavors; and spleen, lung, and stomach meridian tropisms. Cluster analysis showed 61 core drugs, including Radix Glycyrrhizae, Rhizoma Pinelliae, Radix Bupleuri, and Radix Scutellariae (). Apriori association rule analysis yielded 12 binomial rules (herb pairs) and 6 trinomial rules (herb combinations). Radix Bupleuri plus Radix Scutellariae was the core herbal pair for treating malaria. This pair could be combined with Rhizoma Atractylodis Macrocephalae () for treating warm or cold malaria, combined with Pericarpium Citri Reticulatae () or Radix Dichroae () for treating miasmic malaria, or combined with turtle shells () for treating malaria with splenomegaly.Conclusions TCM can be used to classify and treat malaria in accordance with the different stages of development. As the core herbal pair, Radix Bupleuri and Radix Scutellariae can be combined with other drugs to treat malaria with different syndrome types.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Mineração de Dados
6.
Biofouling ; 39(4): 359-370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293733

RESUMO

Despite the importance of outer membrane vesicles (OMVs) in benthic animal settlement, the underlying molecular mechanism remains elusive. Here, the impact of OMVs and OMVs synthesis-related tolB gene in Mytilus coruscus plantigrade settlement was tested. The OMVs were extracted from Pseudoalteromonas marina through density gradient centrifugation, and a tolB knockout strain, achieved by homologous recombination, was utilized for the investigation. Our results demonstrated that OMVs could significantly enhance M. coruscus plantigrades settlement. Deleting the tolB resulted in downregulation of c-di-GMP, accompanied by a reduction of OMV production, a decline in bacterial motility and increasing biofilm-forming ability. Enzyme treatment resulted in a 61.11% reduction in OMV-inducing activity and a 94.87% reduction in LPS content. Thus, OMVs regulate mussel settlement via LPS, and c-di-GMP is responsible for the OMV-inducing capacity. These findings provide new insights into the interactions between bacteria and mussels.


Assuntos
GMP Cíclico , Mytilus , Animais , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes , GMP Cíclico/metabolismo , Lipopolissacarídeos , Mytilus/genética , Mytilus/fisiologia
7.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108636

RESUMO

The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and ß-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.


Assuntos
Biofilmes , Mytilus , Animais , Mytilus/genética , Mytilus/microbiologia , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
Genes (Basel) ; 14(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36833378

RESUMO

To investigate the regulatory functions of L-arginine and nitric oxide (NO) on Mytilus coruscus metamorphosis, M. coruscus larvae were exposed to an inhibitor of nitric oxide synthase (NOS), aminoguanidine hemisulfate (AGH), and a substrate for NO synthesis, L-arginine. We observed that NO levels showed a significant increase, and this trend continued with L-arginine treatment. When NOS activity was inhibited, the larvae could not synthesize NO, and metamorphosis was not inhibited even in the presence of L-arginine. On transfecting pediveliger larvae with NOS siRNA followed by L-arginine exposure, we found that the larvae did not produce NO and that the larval metamorphosis rate was significantly increased, suggesting that L-arginine regulates M. coruscus larval metamorphosis by promoting NO synthesis. Our findings improve our understanding of the effects of marine environmental factors on larval metamorphosis of mollusks.


Assuntos
Mytilus , Óxido Nítrico , Animais , Mytilus/genética , Metamorfose Biológica/genética , Larva , RNA Interferente Pequeno , Óxido Nítrico Sintase
9.
Genes (Basel) ; 13(12)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36553651

RESUMO

Metamorphosis is a critical process in the transition from planktonic life to benthic life for marine invertebrates, which is accompanied by a large amount of energy consumption. Previous studies have proved that AMP-activated protein kinase (AMPK), as a vital energy regulator, plays a prominent role in mediating the growth and development of terrestrial animals. However, its function in the growth and development of marine invertebrates, especially in metamorphosis, remains elusive. This study explored the function of AMPK in the larval metamorphosis of Mytilus coruscus. The full-length cDNA of AMPK genes in M. coruscus was cloned and characterized, which is composed of three subunits, McAMPKα, McAMPKß, and McAMPKγ. Pharmacological tests demonstrated that through the application of an AMPK activator, AMP substantially enhanced the larval metamorphosis rate (p < 0.05). By contrast, the larval metamorphosis rate decreased significantly after being treated with the AMPK inhibitor Compound C (p < 0.05). McAMPK gene knock-down resulted in a reduction in McAMPK gene expression (p < 0.05), and the larval metamorphosis of M. coruscus was significantly restrained (p < 0.05). These results indicated that AMPK signaling is vital in the larval metamorphosis of M. coruscus, which advances further understanding in exploring the molecular mechanisms in the metamorphosis of marine invertebrate larvae.


Assuntos
Mytilus , Animais , Mytilus/genética , Proteínas Quinases Ativadas por AMP/genética , Metamorfose Biológica/genética , Larva/genética
10.
Phys Chem Chem Phys ; 24(48): 29570-29578, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36448558

RESUMO

Polarized structured nitride semiconductors are attractive due to their unique and environment-friendly electronic properties. The stability, ferroelectricity and photocatalytic and photovoltaic properties of super-wurtzite Mg2XN3 (X = Bi, Mo, Nb, Sb, Ta, Tc and W) were determined based on first principles calculations in this study. The calculated results indicate that Mg2XN3 (X = Sb, Ta, Bi and Nb) are stable polar nitrides by phonon frequencies, elastic coefficients and ferroelectric analysis. Mg2XN3 (X = Sb, Ta and Nb) with large ferroelectric polarization strength could absorb ultraviolet light to promote photocatalytic water splitting for hydrogen production. Mg2BiN3 is a new excellent photovoltaic candidate due to its ideal energy band, high electron mobility, high absorption coefficient and large ferroelectric polarization strength.

11.
Nat Nanotechnol ; 17(7): 729-736, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35668169

RESUMO

Quantum-coherent intermolecular energy transfer is believed to play a key role in light harvesting in photosynthesis and photovoltaics. So far, a direct, real-space demonstration of quantum coherence in donor-acceptor systems has been lacking because of the fragile quantum coherence in lossy molecular systems. Here, we precisely control the separations in well-defined donor-acceptor model systems and unveil a transition from incoherent to coherent electronic energy transfer. We monitor the fluorescence from the heterodimers with subnanometre resolution through scanning tunnelling microscopy induced luminescence. With decreasing intermolecular distance, the dipole coupling strength increases and two new emission peaks emerge: a low-intensity peak blueshifted from the donor emission, and an intense peak redshifted from the acceptor emission. Spatially resolved spectroscopic images of the redshifted emission exhibit a σ antibonding-like pattern and thus indicate a delocalized nature of the excitonic state over the whole heterodimer due to the in-phase superposition of molecular excited states. These observations suggest that the exciton can travel coherently through the whole heterodimer as a quantum-mechanical wavepacket. In our model system, the wavelike quantum-coherent transfer channel is three times more efficient than the incoherent channel.

12.
Trends Ecol Evol ; 37(6): 469-472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303993

RESUMO

Biofouling has great environmental, economic, and societal impacts. Emerging and promising strategies for antibiofouling require incorporation of sustainability concepts. To this end, key research priorities should be given to disrupting attachment of organisms or engineering innovative surfaces to slough off fouling organisms from the surfaces, with more holistic considerations of other viable options, including eco-friendly antifouling chemicals.


Assuntos
Incrustação Biológica , Organismos Aquáticos , Incrustação Biológica/prevenção & controle , Propriedades de Superfície
13.
Sci Rep ; 12(1): 4685, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304533

RESUMO

Enzymes have been known to impact the biofilm forming capacity. However, how the enzymes mediate the biofilm formation and macrofouling remains little known. Here, we investigated the effects of the three kinds of proteases, four kinds of glycosidases and one kind of lipase on the detachment of biofilms of Shewanella marisflavi ECSMB14101, identified biofilm total proteins response to enzyme treatments, and then tested the effects of biofilms treated with enzymes on the settlement of the mussel Mytilus coruscus plantigrades. The results showed that the cell density of bacteria in biofilms formed at different initial bacterial density were noticeably reduced after treating with all tested enzymes, and Neutrase and α-Amylase exhibited best removing efficiency of > 90%. Bacterial total proteins in S. marisflavi biofilm noticeably reduced or disappeared after treated by Alcalase. For the settlements of the mussel M. coruscus plantigrades, inducing capacities of S. marisflavi biofilm were noticeably suppressed and downregulation was > 75% at the initial density of 5 × 106 cells/cm2. Thus, the tested enzymes could effectively remove the adhered bacterial cell, inhibit the biofilm formation and finally suppress the mussel settlement. Our findings extend novel knowledge to developing eco-friendly approach to control micro- and macro-fouling.


Assuntos
Mytilus , Animais , Proteínas de Bactérias/farmacologia , Biofilmes , Mytilus/microbiologia
14.
Biofouling ; 37(8): 911-921, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34620016

RESUMO

The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.


Assuntos
Mytilus , Pseudoalteromonas , Animais , Proteínas de Bactérias/genética , Biofilmes , GMP Cíclico , Ácidos Graxos , Regulação Bacteriana da Expressão Gênica , Metamorfose Biológica , Mytilus/metabolismo , Pseudoalteromonas/metabolismo
15.
Sci Rep ; 11(1): 19288, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588587

RESUMO

Larval metamorphosis in bivalves is a key event for the larva-to-juvenile transformation. Previously we have identified a thyroid hormone receptor (TR) gene that is crucial for larvae to acquire "competence" for the metamorphic transition in the mussel Mytilus courscus (Mc). The mechanisms of thyroid signaling in bivalves are still largely unknown. In the present study, we molecularly characterized the full-length of two iodothyronine deiodinase genes (McDx and McDy). Phylogenetic analysis revealed that deiodinases of molluscs (McDy, CgDx and CgDy) and vertebrates (D2 and D3) shared a node representing an immediate common ancestor, which resembled vertebrates D1 and might suggest that McDy acquired specialized function from vertebrates D1. Anti-thyroid compounds, methimazole (MMI) and propylthiouracil (PTU), were used to investigate their effects on larval metamorphosis and juvenile development in M. coruscus. Both MMI and PTU significantly reduced larval metamorphosis in response to the metamorphosis inducer epinephrine. MMI led to shell growth retardation in a concentration-dependent manner in juveniles of M. coruscus after 4 weeks of exposure, whereas PTU had no effect on juvenile growth. It is hypothesized that exposure to MMI and PTU reduced the ability of pediveliger larvae for the metamorphic transition to respond to the inducer. The effect of MMI and PTU on larval metamorphosis and development is most likely through a hormonal signal in the mussel M. coruscus, with the implications for exploring the origins and evolution of metamorphosis.


Assuntos
Antitireóideos/farmacologia , Metamorfose Biológica/fisiologia , Mytilus/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Iodeto Peroxidase/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Metamorfose Biológica/efeitos dos fármacos , Metimazol/farmacologia , Mytilus/efeitos dos fármacos , Propiltiouracila/farmacologia
16.
Mar Genomics ; 58: 100846, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217483

RESUMO

Bacteria of the genus Shewanella have been studied for their versatile electron-accepting abilities, particularly for extracellular electron transfer via minerals. Shewanella marisflavi ECSMB14101 was isolated from naturally formed biofilms in the East China Sea. The genome of S. marisflavi ECSMB14101 encodes 3891 genes with a total size of 4,343,492 bp in one chromosome. Its GC content is 49.89%. S. marisflavi ECSMB14101 is able to synthesize a red pigment, which may be achieved through Cytochrome c3 and electron transfer to reduce Fe(III) oxide. The genomic data presented here could provide fundamental insights to better understand the physiological characteristics of S. marisflavi, the ecological significance of red pigment synthesis, and its inductive effects on the settlement of marine invertebrate larvae.


Assuntos
Genoma Bacteriano , Shewanella/genética , Organismos Aquáticos/genética , Composição de Bases , Oceano Pacífico , Sequenciamento Completo do Genoma
17.
Gigascience ; 10(4)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891010

RESUMO

BACKGROUND: The hard-shelled mussel (Mytilus coruscus) is widely distributed in the temperate seas of East Asia and is an important commercial bivalve in China. Chromosome-level genome information of this species will contribute not only to the development of hard-shelled mussel genetic breeding but also to studies on larval ecology, climate change biology, marine biology, aquaculture, biofouling, and antifouling. FINDINGS: We applied a combination of Illumina sequencing, Oxford Nanopore Technologies sequencing, and high-throughput chromosome conformation capture technologies to construct a chromosome-level genome of the hard-shelled mussel, with a total length of 1.57 Gb and a median contig length of 1.49 Mb. Approximately 90.9% of the assemblies were anchored to 14 linkage groups. We assayed the genome completeness using BUSCO. In the metazoan dataset, the present assemblies have 89.4% complete, 1.9% incomplete, and 8.7% missing BUSCOs. Gene modeling enabled the annotation of 37,478 protein-coding genes and 26,917 non-coding RNA loci. Phylogenetic analysis showed that M. coruscus is the sister taxon to the clade including Modiolus philippinarum and Bathymodiolus platifrons. Conserved chromosome synteny was observed between hard-shelled mussel and king scallop, suggesting that this is shared ancestrally. Transcriptomic profiling indicated that the pathways of catecholamine biosynthesis and adrenergic signaling in cardiomyocytes might be involved in metamorphosis. CONCLUSIONS: The chromosome-level assembly of the hard-shelled mussel genome will provide novel insights into mussel genome evolution and serve as a fundamental platform for studies regarding the planktonic-sessile transition, genetic diversity, and genomic breeding of this bivalve.


Assuntos
Mytilus , Animais , Cromossomos/genética , Ásia Oriental , Genoma , Mytilus/genética , Filogenia
18.
Nat Commun ; 12(1): 1280, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627671

RESUMO

Vibronic coupling is a central issue in molecular spectroscopy. Here we investigate vibronic coupling within a single pentacene molecule in real space by imaging the spatial distribution of single-molecule electroluminescence via highly localized excitation of tunneling electrons in a controlled plasmonic junction. The observed two-spot orientation for certain vibronic-state imaging is found to be evidently different from the purely electronic 0-0 transition, rotated by 90°, which reflects the change in the transition dipole orientation from along the molecular short axis to the long axis. Such a change reveals the occurrence of strong vibronic coupling associated with a large Herzberg-Teller contribution, going beyond the conventional Franck-Condon picture. The emergence of large vibration-induced transition charges oscillating along the long axis is found to originate from the strong dynamic perturbation of the anti-symmetric vibration on those carbon atoms with large transition density populations during electronic transitions.

19.
J Phys Chem Lett ; 12(7): 1961-1968, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33591760

RESUMO

Probing bond breaking and making as well as related structural changes at the single-molecule level is of paramount importance for understanding the mechanism of chemical reactions. In this work, we report in situ tracking of bond breaking and making of an up-standing melamine molecule chemisorbed on Cu(100) by subnanometer resolved tip-enhanced Raman spectroscopy (TERS). We demonstrate a vertical detection depth of about 4 Å with spectral sensitivity at the single chemical-bond level, which allows us not only to justify the up-standing configuration involving a dehydrogenation process at the bottom upon chemisorption, but also to specify the breaking of top N-H bonds and the transformation to its tautomer during photon-induced hydrogen transfer reactions. Our results indicate the chemical and structural sensitivity of TERS for single-molecule recognition beyond flat-lying planar molecules, providing new opportunities for probing the microscopic mechanism of molecular adsorption and surface reactions at the chemical-bond level.

20.
Sci Rep ; 11(1): 919, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441694

RESUMO

Bacteria from coast seawaters are widely known to induce larval recruitment of many invertebrates. However, whether and how deep-sea bacteria, that play crucial roles in the ecological and biogeochemical cycles, promote larval recruitment remains little known. Here, the interaction between deep-sea bacterial biofilms (BFs) and Mytilus coruscus larvae was tested. All these nine deep-sea bacterial isolates triggered planktonic-sessile transition, and the highest percentage of post-larvae was observed in Virgibacillus sp. 1 BF. Except for Pseudomonas sp. 3, Pseudoalteromonas sp. 32 and Bacillus sp. 13, other BF cell  densities were significantly related to their corresponding inductive efficiency. The deep-sea Virgibacillus sp. 1 BF's cue that triggers planktonic-sessile transition was uncovered. Treating Virgibacillus sp. 1 BFs through physic-chemical approaches reduced inducing impact and cell survival. The conditioned water collaborated with formalin-fixed Virgibacillus sp. 1 BF hoisted planktonic-sessile transition efficiency in comparison to each one alone. Thus, two signals derived from deep-sea bacteria trigger planktonic-sessile transition in M. coruscus. This finding firstly demonstrates that deep-sea bacteria has good potential for application in the mussel seed production and provides novel insight to clarify the bacteria-mussel interaction.


Assuntos
Larva/microbiologia , Metamorfose Biológica/fisiologia , Mytilus/microbiologia , Animais , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Mytilus/crescimento & desenvolvimento , Oceanos e Mares , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...